## AR240 表面粗糙度仪

## 使用说明书



北京时代光南检测技术有限公司 服务热线: 010-62969867

| 1 | 概述    |            | 3  |
|---|-------|------------|----|
| 1 | .1    | 主要特点       | 3  |
| 1 | .2    | 测量原理       | 4  |
| 1 | .3    | 仪器各部分名称    | 4  |
| 1 | .4    | 按键定义       | 6  |
| 1 | .5    | 电池充电       | 6  |
| 1 | .6    | 传感器与主机连接方法 | 7  |
| 2 | 测量    | 操作         | 8  |
| 2 | .1    | 测量前的准备     | 8  |
| 2 | .2    | 开关机        | 8  |
| 2 | .3    | 触针位置       | 9  |
| 2 | .4    | 启动测量       | 9  |
| 2 | .5    | 测量结果显示     | 10 |
| 2 | .6    | 打印实时测量结果   | 10 |
| 2 | .7    | 存储测量结果     | 11 |
| 2 | .8    | 测量参数设置     | 11 |
| 2 | .9    | 存储管理       | 12 |
|   | 2.9.1 | 1   查看记录   |    |
|   | 2.9.2 | ? 格式化      |    |
| 2 | .10   | 日期设置       | 14 |
| 2 | .11   | 软件信息       | 14 |
| 2 | .12   | 参数校准       | 15 |
| 2 | .13   | 打印设置       | 16 |
| 2 | .14   | 与 PC 机通讯   | 16 |
| 3 | 可选    | 附件及其使用     | 17 |
| 3 | .1    | 可调支架       | 17 |
| 3 | .2    | 测量平台       |    |
| 3 | .3    | 接长杆        | 18 |
| 3 | .4    | 标准传感器      | 18 |
| 3 | .5    | 曲面传感器      | 19 |
| 3 | .6    | 小孔传感器      |    |
| 3 | .7    | 深槽传感器      | 20 |
| 4 | 技术    | 参数及测量范围    | 21 |
| 4 | .1    | 技术参数       |    |
| 4 | .2    | 测量范围       |    |

目 次

| 5 | 日常 | 常维护与保养 | 22 |
|---|----|--------|----|
| 5 | .1 | 传感器    |    |
| 5 | .2 | 主机     |    |
| 5 | .3 | 电池     |    |
|   |    |        |    |

第**1**页

| 5.4   | 校准样板                       |    |
|-------|----------------------------|----|
| 5.5   | 故障处理                       | 23 |
| 6 参考  | 信息                         | 24 |
| 6.1   | 术语                         | 24 |
| 6.1.  | 1 术语                       | 24 |
| 6.1.2 | <b>2</b> 几种滤波器的滑行长度        | 24 |
| 6.2   | 参数定义                       | 25 |
| 6.2.  | 1                          | 25 |
| 6.2.2 | 2                          |    |
| 6.2.  | <i>3</i> 轮廓的最大高度 <i>Rz</i> |    |
| 6.2.4 | <b>4</b> 轮廓的总高度 <i>Rt</i>  |    |
| 6.3   | 取样长度推荐表                    | 27 |

### 1 概述

该表面粗糙度测量仪是适合于生产现场环境和移动测量需要的 一种手持式仪器,可测量多种机加工零件的表面粗糙度,可根据选定 的测量条件计算相应的参数,并在显示器上显示出全部测量参数和轮 廓图形。该仪器它操作简便,功能全面,测量快捷,精度稳定,携带 方便,能测量最新国际标准的主要参数,本仪器全面严格执行了国际 标准。测量参数符合国际标准并兼容美国、德国、日本、英国等国家 的标准。适用于车间检定站、实验室、计量室等环境的检测。

#### 1.1 主要特点

- □机电一体化设计,体积小,重量轻,使用方便;
- □采用 DSP 芯片进行控制和数据处理,速度快,功耗低;
- □大量程,多参数 Ra,Rz,Rq,Rt。
- □高端机器增加 Rp,Rv,R3z,R3y,RzJIS,Rs,Rsk,Rsm,Rku,Rmr 等参数;
- □ 128×64 OLED 点阵显示器,数字/图形显示;高亮无视角;
- □显示信息丰富、直观、可显示全部参数及图形;
- □兼容 ISO、DIN、ANSI、JIS 多个国家标准;
- □内置锂离子充电电池及充电控制电路,容量高、无记忆效应;
- □ 有剩余电量指示图标,提示用户及时充电;
- □可显示充电过程指示,操作者可随时了解充电程度
- 口连续工作时间大于 20 小时
- □超大容量数据存储,可存储 100 组原始数据及波形。
- □实时时钟设置及显示,方便数据记录及存储。
- □具有自动休眠、自动关机等节电功能
- □可靠防电机走死电路及软件设计
- □显示测量信息、菜单提示信息、错误信息及开关机等各种提示说 明信息;
- □ 全金属壳体设计, 坚固、小巧、便携、可靠性高。
- □中/英文语言选择;
- □可连接电脑和打印机;
- 口可打印全部参数或打印用户设定的任意参数。
- □可选配曲面传感器、小孔传感器、测量平台、传感器护套、接长 杆等附件。

#### 1.2 测量原理

本仪器在测量工件表面粗糙度时,先将传感器搭放在工件被测表 面上,然后启动仪器进行测量,由仪器内部的精密驱动机构带动传感 器沿被测表面做等速直线滑行,传感器通过内置的锐利触针感受被测 表面的粗糙度,此时工件被测表面的粗糙度会引起触针产生位移,该 位移使传感器电感线圈的电感量发生变化,从而在相敏检波器的输出 端产生与被测表面粗糙度成比例的模拟信号,该信号经过放大及电平 转换之后进入数据采集系统,DSP 芯片对采集的数据进行数字滤波和 参数计算,测量结果在显示器上给出,也可在打印机上输出,还可以 与 PC 机进行通讯。

1.3 仪器各部分名称



传感器



显示界面



仪器正面图

1.传感器 2.显示区 3 按键区 4 支架部件



仪器侧面图

5.USB 通讯充电口 6.电源开关 7 附件安装孔

仪器电源开关是仪器的电源总开关,长期不用时应处于关闭 状态,其开关位置定义如下 : 打开:将拨动开关调至 ON 位置

关闭:将拨动开关调至 OFF 位置

#### 1.4 按键定义



#### 1.5 电池充电

当电池电压过低时,即显示屏上的电池提示符 □ 显示电压过低时,应尽快给仪器充电。本仪器使用仪器侧面的 USB 口进行充电,可以使用自带的电源适配器进行充电,也可以用计算机的 USB 口进行充电,如使用其他的电源适配器进行充电时,其输出电压应为 5V 直流电源,电流应大于 800mA。

充电时,仪器有充电动画显示,充满后动画结束,显示充满符号。 本仪器采用是锂离子电池,无记忆效应。 可以随时充电,充电时仪器可照常工作 最长充时间约2.5小时。

<sup><sup>1</sup></sup>充电时,先将保证仪器侧面的电源开关是置于 ON 的位置

#### 1.6 传感器与主机连接方法



安装时,用手拿住探头主体部分,按图所示将探头插入仪器底部的传感器连接套中,然后轻推到底。拆卸时,用手拿住传感器的探头 主体部分或保护套管的根部,慢慢地向外拉出。

1、传感器的触针是本仪器的关键零件,应给予高度重视。

2、在进行传感器装卸的过程中,应特别注意不要碰及触针,以免造成损坏,影响测量。

### 2 测量操作

2.1 测量前的准备

开机检查电池电压是否正常; 擦净工件被测表面; 将仪器正确、平稳、可靠地放置在工件被测表面上; 传感器的滑行轨迹必须垂直于工件被测表面的加工纹理方向。



₩ 正确、规范的操作是获得准确测量结果的前提,请遵照执行。

2.2 开关机



- 说明:1、下次开机时将显示上次关机时所设置的内容,
  - 2、开机和关机时,按住开关键约2秒钟仪器将执行相应操作。
  - 3、长期不使用仪器时,应将仪器侧面的电源总开关关闭。
  - 4、传感器安装好开始测量时请参照触针位置,尽量将触针位置光 标调整至最佳"0"位

2.3 触针位置

首先,使用触针位置 来确定传感器的位置。 尽量使触针在中间位置 进行测量。



在主界面状态下,按<sup>正正到</sup>触针位置键用于切换触针位置显示界 面和主显示界面。

2.4 启动测量

在主界面状态下,按启动测量键 START 开始测量



#### 2.5 测量结果显示



2.7 存储测量结果

在主显示界面状态下,按<sup>1</sup> 存储键保存测量结果到仪器内存。 仪器内置超大容量存储器,可存储 100 组原始数据及波形数据。

数据的存储记录的文件名按日期时间自动生成,最后保存的数据 记录永远是时间最近的一次记录,因此最后保存的数据记录的记录号 将是 001 号记录。



2.8 测量参数设置

参数 <u>↑</u> ト

在基本测量状态下,按回车键<sup>2</sup>进入菜单操作状态后,再按 方向键<sup>2</sup>选取"参数设置"功能,然后按回车键<sup>2</sup>进 入参数设置状态。在参数设置状态下,可修改全部测量条件。

|        | 菜单            | 4000                                                       |
|--------|---------------|------------------------------------------------------------|
|        | □▷ 1.参        | 数设置                                                        |
|        | 2. 存          | 储管理                                                        |
|        | ↓ 3. 日        | 期设置                                                        |
| 设置     | [000]         | 设置范围                                                       |
| > 取样长度 | <b>0.</b> 8mm | 0.25 <sup>mm</sup> ; 0.8 <sup>mm</sup> ; 2.5 <sup>mm</sup> |
| 评定长度   | 5             |                                                            |
|        | Μ             | 1-5 m                                                      |
| 量程     | €A40\$°S      | 表20;P老40RC±80AUSS D-P                                      |
| 滤波选择   | Ra            | Ra Rz Rt Rq                                                |
| —主显示—  |               | , , , ,                                                    |

→ <del>测量单位 公制 → 公制 英制</del>
 语言选择 中文 中文 英文

在基本测量状态下,按回车键 进入菜单操作状态后,再按方向 建 选取"存储管理"功能,按回车键 进入管理项目。



存储管理由 2 个项目组成, 1 查看记录 2 格式化。 选中项目后按回车键进入。

2.9.1 查看记录

| 查看记录                   | [000]> | ▲ 査看记录                          |    |
|------------------------|--------|---------------------------------|----|
| ▶ 001 2013.05.08 09:08 |        | ↓ 006 2013.05.06 08:            | 08 |
| 002 2013.05.08 09:07   |        | 007 2013.05.06 08:              | 06 |
| 003 2013.05.08 09:05   |        | Ra 008 2013.05.06 08:           | 05 |
| 004 2013.05.08 09:03   |        | 009 2013.05.06 08:              | 02 |
| ↓ 005 2013.05.08 09:01 |        | $\bigcirc$ 010 2013. 05. 01 08: | 08 |
|                        |        |                                 |    |

|     | 向上移动光标 | Ra | 向上翻页 |
|-----|--------|----|------|
| (J) | 向下移动光标 |    | 向下翻页 |

选中相应的记录后按 查看记录内容

在查看记录内容时,按<sup>□□</sup>可以将数据打印到指定打印机上,操作按下图。



#### 2.9.2 格式化

数据格式化是对数据记录的删除操作,一旦格式化,所有数据将 全部清空。在数据格式化前仪器有确认提示信息,用户确认后数据将 不可恢复。



#### 2.10 日期设置

仪器内置实时日历时钟,用于记录测试的时间信息,调整日期时 间按如下步骤



#### 2.11 软件信息

仪器软件和硬件信息可以方便的帮助用户对产品进行升级和维



仪器在测量前,通常需用 标准样板进行校准。本仪器 随机配置一个标准样板,测 量前,用仪器先测试样板,

正常情况,当测量值与样板 值之差在合格范围内,测量 值有效,即可直接测量。

如果测量值与样板值之 差大于仪器规定的误差范 围,或者是用户要求精度较 高,可以使用示值校准功能 来修正和提高测量精度。示 值校准步骤如图所示。

图示中是以 1.63 µ m 的 样板进行校准的步骤,实际 校准以校准样板的标称值为 设定值。



- 通常情况下, 仪器在出厂前都经过严格的测试, 示值误差远小于±
   10%, 在这种情况下, 建议用户不要频繁使用示值校准功能。
- 2、 设定好校准值后,必须按"启动测量键"进行一次完整测量后,仪器 校准才有效。
- 校准后的的新参数必须在进行一次完整测量后按下"回车键"时存储 到仪器。
- 4、 按"取消键"退回菜单不保存校准结果。

第 15 页

#### 2.13 打印设置

本仪器可以根据用户实 际测试要求进行任意参数 的选择打印或全部打印,操 作步骤见图。

2.14 与 PC 机通讯

本仪器配有专用的数据 处理软件,可以方便的将测 量结果上传到 PC 机进行波 形分析和打印。



3 可选附件及其使用

3.1 可调支架

当工件的被测面小于仪器的底面时,可使用可选附件中的传感器 保护套和可调支脚作辅助支承,以完成测量。





1、图中L不能小于本次测量的驱动行程,避免发生传感器在测量时掉到工件外面,造成传感器返回时顶住工件而发生故障。

2、可调支架的锁紧要可靠。

3.2 测量平台

使用测量平台,可更精确地调整仪器与被测工件之间的位置,操 作更加可靠、平稳,使用范围更大,可测量复杂形状零件表面的粗糙 度。与测量平台连用时,可更加精确地调整针位,测量更平稳。当被 测表面 Ra 值较小时,建议使用测量平台。当使用专用传感器时,如 小孔、深槽和曲面等传感器时,必须使用测量平台。



3.3 接长杆

使用接长杆,可增加传感器进入工件内部的深度,接长杆的长度为50mm。



3.4 标准传感器

标准传感器时使用最多的传感器,它可以测量大多数的平面、斜

面、圆锥面、内孔、沟槽等多种表面的粗糙度,可以进行手持式测量, 除了标准传感器,其他专用传感器都需要使用测量平台来测量。





3.5 曲面传感器

曲面传感器主要用于测量半径大于 3 mm 的光滑圆柱表面的粗糙度, 对于半径较大的光滑球面等其他曲面也能取得较好的近似值,曲率半 径越大,表面越光滑,测量效果越好。



3.6 小孔传感器

使用小孔传感器,可测量孔直径大于 2mm 的内表面粗糙度,见下 图所示。



3.7 深槽传感器

使用深槽传感器,可测量槽宽大于3mm,槽深小于10mm的沟槽; 或者高度小于10mm的台阶的表面粗糙度,也可测量平直柱面,配合 平台使用,详细尺寸见下图所示。



#### 4 技术参数及测量范围

#### 4.1 技术参数

| 名称                      |               | 内容                                                                             |  |  |
|-------------------------|---------------|--------------------------------------------------------------------------------|--|--|
| 测量                      | Z轴<br>(垂直)    | 160 µ m                                                                        |  |  |
| 范围                      | X轴<br>(水平)    | 17.5mm                                                                         |  |  |
|                         | 7 4山          | 0. 01 μ m/±20 μ m                                                              |  |  |
| 分辨率                     | ▲ 44          | 0. 02 μ m/±40 μ m                                                              |  |  |
| 测量项目                    |               | 0. 04 µ m/±80 µ m<br>Ra Rz==Ry(JIS) Rq<br>Rt==Rmax<br>Rp Rv R3z R3y<br>Rz(JIS) |  |  |
|                         | <b>会</b> 兆    | Rs Ŕsk Rku Rsm Rmr                                                             |  |  |
|                         |               |                                                                                |  |  |
|                         | 标准            | ISO,ANSI,DIN,JIS                                                               |  |  |
|                         | 图形            | 支承率曲线,                                                                         |  |  |
| 滤波器<br>取样长度( <b>/</b> ) |               | RC,PC-RC,Gauss,D-P                                                             |  |  |
|                         |               | 0.25,0.8,2.5mm                                                                 |  |  |
| 评定长度                    | ( <i>1</i> n) | $2n = h \times n$ n=1~5                                                        |  |  |
|                         | 测量原理          | 位移式差动电感                                                                        |  |  |
|                         | 触针            | 天然金刚石,90 锥角,5 μ m 针尖半径                                                         |  |  |
|                         | 测力            | <4mN                                                                           |  |  |
|                         | 导头            | 硬质合金,滑行方向半径 40mm                                                               |  |  |
|                         |               | /r=0.25, Vt=0.135mm/s                                                          |  |  |
|                         | 滑行速度          | /r=0.8, Vt=0.5mm/s                                                             |  |  |
|                         |               | k=2.5, Vt=1mm/s                                                                |  |  |
|                         |               | 返回 Vt=1mm/s                                                                    |  |  |
| 示值误差                    |               | 个大丁±10%                                                                        |  |  |
| ├- 亦 値 父 功 性            |               |                                                                                |  |  |
| 电源                      |               | │                                                                              |  |  |
| 2F形八寸<br>重畳             |               | 141~55~40000<br>约1/00g                                                         |  |  |
| 里里                      |               | ≤) ±00g<br>温度 <b> 20℃ ~ 40℃</b>                                                |  |  |
| 工作环境                    |               | 湿度: < 90% RH                                                                   |  |  |
| 储存运输到                   | 不境            | 温度:- 40℃ ~ 60℃<br>湿度:< 90% RH                                                  |  |  |

第21页

#### 4.2 测量范围

| 参数                                | 显示范围                  |  |
|-----------------------------------|-----------------------|--|
| Ra                                |                       |  |
| Rq                                | 0.005 µ m ~ 16 µ m    |  |
| Rz<br>R3z<br>Ry<br>Rt<br>Rp<br>Rm | 0.02 µ m ~<br>160 µ m |  |
| Sk                                | 0 ~ 100%              |  |
| S<br>Sm                           | 1mm                   |  |
| tp                                | 0~100%                |  |

- 5 日常维护与保养
- 5.1 传感器
  - 任何时候插拔传感器时都要特别小心,注意不要碰到导头和触 针,因为这是整台仪器的关键零件,要尽量拿住传感器导头托架 的根部(主体的前部)插拔。
  - 2) 完成测量工作后,请及时将传感器放入包装盒内;
  - 3) 请时刻注意保护传感器的测针部分。
  - 4) 传感器是精密部件,任何磕、碰、摔的现象都可能损坏传感器, 应极力避免发生此类情况。
  - 5) 传感器属易损部件,不属于保修范围内部件,只提供维修。为 不影响测量工作,建议用户购买备份传感器用于应急。

5.2 主机

- 注意保持主机表面的清洁,经常用柔软的干布清除其表面 上的灰尘;
- 本仪器为精密测量仪器,应始终保持轻拿轻放,避免使其受到 震动。

5.3 电池

1) 经常观察电池提示符号,当出现低电压时,请及时充电;

2) 充电时间为三小时左右,尽量不要长时间充电;

5.4 校准样板

1) 样板表面要保持清洁。

2) 避免划伤样板工作区域的表面。

5.5 故障处理

本仪器如出现故障,先按故障信息提供的措施处理,如仍不能 排除,则返回生产厂家维修。用户请勿自行拆卸、修理。送回生产厂 家进行检修的仪器,应随同附上保修卡及随机配备的标准样板,并 说明故障现象。

| 错误信息<br>故障现象 | 可能原因                                                             | 排除方法             |
|--------------|------------------------------------------------------------------|------------------|
| 电机检测错误       | 电机走死                                                             | 重新开机             |
| 测量范围溢出       | <ol> <li>1 被测表面的信号超出仪<br/>器测量范围</li> <li>2 触针位置放置远离中心</li> </ol> | 变换大量程<br>调整触针位置  |
| 无测试数据        | 开机后没有进行测量                                                        | 实际测量一次           |
| 测量误差大        | 1 设置参数有误<br>2 校准数据错误                                             | 重新设置测量参数<br>校准机器 |

6 参考信息

6.1 术语

本仪器是在滤波轮廓和直接轮廓两种轮廓上进行参数计算的,全部计算符合 GB/T 3505-2000 《产品几何技术规范 表面结构 轮廓法 表面结构的术语、定义及参数。

6.1.1 术语

滤波轮廓: 原始轮廓经过粗糙度滤波器去除波度成份后的轮廓。 直接轮廓: 只对原始轮廓进行最小二乘法中线计算的轮廓。

- RC: 是传统的二阶 RC 滤波器,符合旧标准,考虑还有用户在 使用,作为过渡本仪器仍然保留。该滤波器的输入与输出 信号有相位差。
- PC-RC: 是在 RC 滤波器的基础上进行数字相位修正的滤波器, 幅值传输特性与 RC 滤波器相同,基本没有相位差。通过 RC 和 PC-RC 滤波器得到的幅值参数相同。
- GAUSS(高斯滤波器): 是最新的粗糙度滤波器,符合 GB/T 18777-2002 《产品几何技术规范 表面结构 轮廓法 相位修正滤波器的计量特性》。

6.1.2 几种滤波器的滑行长度

●如果选择 RC 滤波器



#### 

#### ● 如果选择 PCRC 滤波器

(

● 如果选择 GAUSS 滤波器



#### 6.2 参数定义

#### 6.2.1 评定轮廓的算术平均偏差 Ra

在一个取样长度内纵坐标值 Z(x)绝对值的算术平均值。



6.2.2 评定轮廓的均方根偏差 Rq

在一个取样长度内纵坐标值 Z(x) 的均方根值。

$$Rq = \sqrt{\frac{1}{7} \int_{0}^{1} \frac{Z(x)}{x \, dx}}$$

6.2.3 轮廓的最大高度 Rz

在一个取样长度内,最大轮廓峰高 Zp 和最大轮廓谷深 Zv 之和的 高度。



6.2.4 轮廓的总高度 Rt

在评定长度内,最大轮廓峰高 Zp 和最大轮廓谷深 Zv 之和。

#### 6.3 取样长度推荐表

| Ra (µm)              | Rz (µm)              | 取样长度 λc(mm |
|----------------------|----------------------|------------|
| >5~10                | >20~40               | 25         |
| >2.5~5               | >10~20               | 2.0        |
| >1.25~2.5            | >6.3~10              |            |
| $8 > 0.63 \sim 1.25$ | >3.2∼6.3<br>>1.6∼3.2 | 0.         |
| >0.32 0.03           | >1.0 3.2             |            |
| >0.20~0.25           | >1.0~1.25            |            |
| >0.16~0.20           | >0.8~1.0             |            |
| >0.125~0.16          | >0.63~0.8            |            |
| >0.1~0.125           | >0.5~0.63            |            |
| >0.08~0.1            | >0.4~0.5             |            |
| 5 >0.063~0.0         | 8 >0.32~0.           | 4          |
| >0.05~0.063          | >0.25~0.32           |            |
| >0.04~0.05           | >0.2~0.25            |            |
| >0.032~0.04          | >0.16~0.2            |            |
| >0.025~0.032         | 2 >0.125~0.1         | 6          |
| >0.02~0.025          | >0.1~0.125           |            |

# 仪器配置清单

| 序号 | 名称      | 数量  | 备注   |
|----|---------|-----|------|
| 1  | 粗糙度仪主机  | 1 台 |      |
| 2  | 粗糙度传感器  | 1 只 | 精密部件 |
| 3  | 高度调节支架  | 1 套 |      |
| 4  | 校准试块    | 1 块 |      |
| 5  | 试块支架    | 1 个 |      |
| 6  | 充电器     | 1 个 |      |
| 7  | USB 充电线 | 1条  |      |
| 8  | 使用说明书   | 1本  |      |
| 9  | 合格证     | 1 张 |      |
| 10 | 保修卡     | 1 张 |      |
| 11 | 仪器箱     | 1 个 |      |
| 12 |         |     |      |
| 13 |         |     |      |
| 14 | 热敏打印机   |     | 可选附件 |
| 15 |         |     |      |
| 16 |         |     |      |
| 17 |         |     |      |

# 杰出的高技术产品 令人放心的质量 让您满意的服务

地址:北京市海淀区上地开发区 用服电话:010-62969867 用服传真:010-82782201 第 **29** 页